Final exam for Kwantumfysica 1 - 2010-2011
Thursday 21 April 2011, 13:00 - 16:00

READ THIS FIRST:

¢ Note that the lower half of this page lists some useful formulas and constants.

¢ Clearly write your name and study number on each answer sheet that you use.

e On the first answer sheet, write clearly the total number of answer sheets that you
turn in.

e Note that this exam has 3 questions, it continues on the backside of the papers!

e Start each question (number 1, 2, 3) on a new answer sheet.

e The exam is open book within limits. You are allowed to use the book by Liboff,
the handout Extra note on two-level systems and exchange degeneracy for identical
particles, and one A4 sheet with notes, but nothing more than this.

o If it says “make a rough estimate”, there is no need to make a detailed calculation,
and making a simple estimate is good enough. If it says “calculate” or “derive”,
you are supposed to present a full analytical calculation.

e Ifyou get stuck on some part of a problem for a long time, it may be wise to skip it
and try the next part of a problem first.

Useful formulas and constants:

Electron mass " me =9.1-10% kg
Electron charge e =-16-10"¢C
Planck’s constant h =6.626-10>"Js=4.136 - 10" Vs

Planck’s reduced constant % =1.055-102*Js=6.582- 10" eVs

Fourier relation between x-representation and k-representation of a state

w(x) =_J;__;_T@(k)em i

?(k)zﬁj‘l’(x)e"k"dx

Standard Fourier transform pairs:

‘P(x): 7;7, lxléb Fourier @(k):x/ismkb
0, |x>b © w kb
_ |b sinbx Fourier —— ﬁ, [k}sb
LP(x)"\/; bx o T(k)"{o, K> b

Standard integrals:

0

_[e""zdx=«/;
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Problem 1
Consider a one-dimensional system, with a single particle with mass m = 1020 kg at
position x in the potential

V(x)= %(mcog )x2 :

Given the mass m, the constant @y defines how steep the potential is. This system
concerns a particle that is bound in a static potential, so it must have a discrete set of
energy eigenstates y,(x) (or in Dirac notation, [y, ), where # is an index

n=0,1,2,3 ... for labeling these states.

a) Write down the Hamiltonian H of this system in x-representation. Write it out in an
expression that uses the constants m and ay where possible.

Assume that it is known that the ground state (lowest energy eigenstate) of this system
is of the form

P(x)=de™,
(in Dirac notation denoted as [\¥') ) but that the values of 4 and b (real constants) are
not known, and also the eigenvalue that belongs to this eigenstate is not known.

b) Draw a graph of WP(x). For which value of 4 (in terms of constants b and others that
you may need) is this state normalized?

In order to find the values for 4 and b for which the state ‘¥'(x) represents the true
ground state yo(x), you must use in this problem the variational method. For this case,

this implies that <ﬁ] > is minimum with respect to the variation of the parameter b.

¢) Say that the real (but still unknown to us) ground state energy of the system is Ey,
with the corresponding eigenstate |yo). Use Dirac notation to proof that for any state
(¥|A]e)

¥[E)
Hint: Use that any trial state [) can always be written as a superposition of all the
real energy eigenstates [y,

[¥) that we may consider, it will always obey > E,.

d) The results of ¢) shows that equality @% = E, holds only for the case [¥)=x0).
Here %}‘{%} has a minimum value, so |yo) and Ey can be found by a procedure that

minimizes the expression with respect to b. Obviously, this must be carried out in the
x-representation. Use this approach to derive the values of b, 4 and Ep in terms of m

and ax.
e) Calculate for the ground state that you found in d), the expectation value for kinetic

energy and the expectation value for potential energy. Explain the result of
qualitatively in terms of the Heisenberg uncertainty relation.
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Problem 2

An apparatus for an experiment shoots out electrons one by one, in one particular
direction (the x-direction, the direction of the beam). After leaving the apparatus, the
beam is passing an area where no significant forces act on the electron. Consequently,
the electrons in the beam can be described as a free particle moving in one dimension.

a) Write down a Hamiltonian for one of the electrons in the beam. Explain your
answer,

The research team aims at setting up the experiment in such a way that all the
clectrons leave the apparatus at the same speed, and that the quantum uncertainty in
the speed of each electron is quite small. They aim at giving the electrons a velocity of
100 m/s. To check whether the setup works, they measure at some point in the beam
(which they will define as x = 0) the velocity of a large number of electrons. They find
a probability distribution P(v) for the electrons' velocities v as in the figure below
(uniform, with v; = 198 m/s and v, = 202 m/s).
P(v)
t

0 >y
v, v,

b) They now remove this measurement apparatus from the beam, such that electrons
passing x = 0 are not disturbed. Desctibe and sketch a normalized wavefunction ¥(k)
as a function of wavenumber & (in x-direction) for one of the electrons while it passes
x=0 (put in the sketch labels &; and %, related to v; and v;). Use a wavefunction
which agrees with the observed distribution P(v), and show that it is normalized.
Assume that the wavefunction can be chosen real and positive where it is not zero.

¢) Calculate the wavefunction as a function of position x, that describes state of the
electron which you already described as a function of & for answering question b).
Hint: write k; as k.-Ak and k; as k,+Ak (with k, = (k; + k2)/2, and Ak = (k; - k;)/2).

d) Sketch and describe the probability density as a function of x, for the wavefunction
you found in answer c).

e) Estimate the uncertainty in the momentum and the position of the particle when it is
near x = 0. Evaluate your answer.

f) They now put the measurement apparatus back into the beam. It measures the speed
of the electrons without trapping the electron (that is, the electrons continue to fly
along the beam). At some moment, an electron passes the measurement apparatus, and
the velocity is measured with very high accuracy, with result v,. Explain why one
should now assume that the wavefunction as a function of % is very close to the

form @(k) =5k - km) . Calculate £,, for the case that the result is 199 m/s.
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g) For the case of f), consider the moment that the measurement was just finished, and
the electron is still near x =0. For this situation, calculate the wavefunction as a
function of x that describes the state of the electron.

h) Sketch the probability density as a function of x, for the wavefunction you found in
answer g).

i) Evaluate the validity of the description of the state of the system in answers f)-h).

j) One team members suggests to keep the velocity measurement apparatus in the
beam, as it reduces the quantum uncertainty in the velocity of the electrons. Discuss
whether this indeed is useful for meeting the goals that have been summarized above
the figure. Discuss it for individual electrons, and for the ensemble of electrons.

Problem 3

A certain atom is in a state with its total orbital angular momentum vector L
(described by the operator L) defined by orbital quantum number / = 1. For the

system in this state, the operator for the z-component of angular momentum is f,z. It

has three eigenvalues, +# (with corresponding eigenstate +z>), 0% (with eigenstate

—z>). This operator can be represented as a matrix,

0,)), and -h (with eigenstate

and the ket-states as column vectors, using the basis spanned by +z>, Oz> and
|~Z> , according to
1 0 0 1 0 0
Lono o ol |+)e|0 (0|1} and |-)<|0
0 0 -1 0 0 1

Using this same basis for the representation, the operator and eigenstates for the

system’s x-component of angular momentum are given by

01 0 1 L 1

A 5 2 72 2
Lxej_z— 10 1], |+)e|El [0)e| 0 jad |- )e|-F%
010 1 —-L 1

2 N;] 2

a) Use this information to calculate what the eigenvalues are that belong to +.\~> ,

_x>.

‘0x> and
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b) At some point the system is in the normalized state

EAE

Z) . Calculate for this state the expectation value for

angular momentum in z-direction and the expectation value for angular momentum in

x-direction,

¢) Calculate for this state |‘P1> the quantum uncertainty AL, in the z-component of the

system’s angular momentum.

d) With the system still in this same state |‘P1> , you are going to measure the

x-component of the system’s angular momentum. What are the possible measurement
results? Calculate the probability for getting the measurement result with the highest

value for angular momentum in x-direction.

¢) Now the system is prepared in a different state (now superposition of eigenstates of

L), |¥,) \/—|+

system’s angular momentum. What is the probability to find the answer +A?

You are going to measure the z-component of the

f) Now the system is prepared in a different state (now again a superposition of

, at time # = 0. Another change to the

eigenstates of L 2 )s |‘P
system is that one now applied an external magnetic field with magnitude B along the
z-axis. The Hamiltonian of the system is now, I = yBﬁz , where v is a constant that

reflects how much the energy of angular momentum states shifts when applying the
field. Calculate how the expectation value for angular momentum in x-direction

depends on time.

-—IHI
Use Dirac notation and the operator U =¢ * .
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